诱导公式
1.公式1:设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
2.公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α) = -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
3.公式三:任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
- 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六:π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函 数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变